-
FEED DE NOTICIAS/ NEWS FEED
iqoptionapi/iqoptionapi
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Use Git or checkout with SVN using the web URL.
Work 如何使用IQ Option fast with our official CLI. Learn more.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching GitHub Desktop
If nothing happens, download GitHub 如何使用IQ Option Desktop and try again.
Launching Xcode
If nothing happens, download Xcode and try again.
Launching Visual Studio Code
Your codespace will open once ready.
There was a problem preparing your codespace, please try again.
This branch is 203 commits ahead of evecimar:master.
Open a pull request to contribute your changes upstream.
Latest commit
Git stats
Files
Failed to load latest commit information.
README.md
AJUDE A MANTER O PROJETO ATIVO
EN: HELP KEEPING THIS PROJECT ACTIVE
Para manter o projeto continuamente atualizado contribua com uma doação, com alguma correção ou melhoria.
As doações serão 如何使用IQ Option usadas para adicionar novas features citadas abaixo.
Español - AYUDA A MANTENER ESTE PROYECTO ACTIVO
Para mantener el proyecto continuamente actualizado, contribuye con una donación, con cualquier corrección o mejora.
Las donaciones se utilizarán para agregar nuevas funciones que se mencionan a continuación.
EN: To keep the project continuously updated you can contribute with a donation or with some correction or improvement.
HELP KEEPING THIS PROJECT ACTIVE
To keep project continuously updated, contribute with a donation, with any correction or improvement.
Donations will be used to add new features mentioned below.
PLANEJAMENTO DE NOVAS FEATURES
EN: NEW FEATURES PLANNING
ES: PLANIFICACIÓN DE NUEVAS CARACTERÍSTICAS
-
CALENDARIO 如何使用IQ Option ECONOMICO / ECONOMIC CALENDAR (UNDER DEVELOPMENT)
Descrição: Pega o calendario econimico da iqoption. Essa feature vai possibilitar que vocês possar evitar fazer operações quando estiver muito arriscado.
-
FEED DE NOTICIAS/ NEWS FEED
Descrição: Noticias sobre o mercado
IQOPTION API SUPPORTED BY COMMUNITY
This api is intended to be an open source project to communicate with iqOption site. this is a no official repository, it means it is maintained by community
Esta API é destinada a ser um projeto de código aberto para se comunicar com o site da iqOption. este é um repositório não oficial, significa que é mantido pela comunidade
Esta API está destinada a ser un proyecto de código abierto para comunicarse con el sitio de IqIoption. este es un repositorio no oficial, significa que es mantenido por la comunidad
IMPORTANT NOTE / NOTA IMPORTANTE
Due to the large amount of scammers that have appeared in the market, it is recommended that you DO NOT enter your password into an unknown exe or robot site that operates on iqoption because many of those have stolen people's passwords so be 如何使用IQ Option careful. It's best if you develop your robot or hire someone you trust.
Devido a grande quantidade de golpistas que tem aparecido no mercado, recomenda-se que você NÃO inserir sua senha em exe ou sites de robo 如何使用IQ Option desconhecidos que opera na iqoption porque muitos desses tem roubado as senhas das pessoas então tomem cuidado. O melhor é você desenvolver seu robo ou contratar alguem de confiança.
Canal no youtube explicando com trabalhar com a api
Kodandao com Faria
This api is based on Lu-Yi-Hsun
Thanks also for this version he fixed some bugs.
It was not been updated by him. So I decided to study and do this work. I don't know how all works yet but I'll learn and teach you
Contribute with Community
Help me to keep this project working. Open relevant issues and give a hand to fix the bug. I'll start a channel on youtube in future as soon as possible to share how I'm working with this project. The channel will be in portuguese but you can help with subtitles.
I'll 如何使用IQ Option do lives on twitch to work together with you. And if you enjoy it and could contribute with any donation it will be welcome.
If something is not clear on documentation let me know and I'll try to explain what I know.
Please send me suggestions . feedbacks are welcome
I'm using this tools anaconda with python 3.7 with contains a lot of libs pre-installed
如何使用IQ Option
A powerful trading robot that works for you
Get your first 如何使用IQ Option results in 5 minutes
Professional trading tool
Trading on popular indicators
Strategies for all risk levels
Profit limit & Stop Loss
Easy to use
Quick setup with instructions on your language
$10 000 for you to try out Demo account
Flexible notification system
Smooth experience on any device
Your convenience is our priority, that’s why IQ Bot is available both on web & mobile platforms.
$1 881 494
We offer smart and professional tool for your investments
Proven strategies
Our profound team of trading analyst collected all the famously proven strategies.
Fraud prevention
Your financial information and account details are safely stored and encrypted.
Training on Demo
You can run all the strategies on Demo account without any deposit.
24/7 Support
Online chat with expert customer support is available for you.
Ready to try IQ Bot?
Follow these 4 small steps to get to 如何使用IQ Option know IQ Bot and start earning on real account
Download app
Create IQ Option account
Set up robot and try on Demo
Make deposit and start earning
Download app
Create IQ Option account
Set up robot and try on Demo
Make deposit and start earning
Download app
Create IQ Option account
Set up robot and try on Demo
Make deposit and start earning
Risk warning: trading involves high risks including the risk of losing some or all of your investment amount and may not be suitable for all investors.
STATA教程之:Estout
上述表格都是在STATA窗口中的显示效果,并不是我们的最终目的。我们希望能够将表格制作和文章写作打通起来,实现完全自动化,从进行回归分析,到将表格加入到文章中,不需要进行任何手动的复制粘贴。将这一过程自动化的目的,是在不断修改回归的过程中,减少人为出错的概率。为了达到这个目的,我们需要使用estout 中的using .tex, 以及prehead, postfoot这几个选项。using x.tex将输出结果更改为tex格式,而prehead, postfoot分别包括了使得tex文档能够直接编译成pdf的tex代码。具体代码可见下图。
STATA在执行完上述代码后,会生成一个estout_eg.tex的文档。通过Latex编译这个文档,我们可以得到如下图所示的
手把手教你用 Fast Tree 快速构建序列进化树
一般来讲,如果模型合适,最大似然法的效果较好。对于近缘序列,最大简约法用的假设最少,各种方法结果相似。而对于远缘序列,一般使用最大似然法或邻接法。对相似度很低的序列,邻接法往往出现 Long-branch attraction(LBA,长枝吸引现象),严重干扰进化树的构建。对于各种方法构建分子进化树的准确性,Hall 认为贝叶斯的方法最好,其次是最大似然法,然后是最大简约法。其实如果序列的相似性较高,各种方法结果差别不大。
最大似然法和邻接法需要选择模型。对于蛋白质序列,一般选择 Poisson Correction(泊松修正)模型。而对于核酸序列,一般选择 Kimura 2-parameter(Kimura-2 参数)模型。
表 1. 构建进化树的常用软件
软件名称 | 简介 |
Clustal X | 图形化的序列比对工具 |
GeneDoc | 多序列比对结果美化工具 |
BioEdit | 序列分析综合工具 |
MEGA | 图形化比对,进化分析综合工具 |
PAUP | 进化分析工具 |
Phylip | 进化分析工具 |
PhyML | 最大似然法建树工具 |
PAML | 最大似然法建树工具 |
MrBayes | 贝叶斯法建树工具 |
FastTree | 最大似然法建树工具(速度快) |
TreeView | 进化树显示工具 |
本文主要讲 FastTree 使用方法:
1. 在默认参数下,FastTree 比 PhyML 更准确,比 PhyML 快 100~1000 倍;
2 . FastTree 使用模型为:核酸进化模型:Jukes-Cantor 或者 GTR(generalized time-reversible);蛋白进化模型:JTT (Jones-Taylor-Thornton 1992), WAG (Whelan & Goldman 2001) 或者 LG (Le and Gascuel 2008)
下载,安装 FastTree
Linux 64-bit executable (+SSE)
Multi-threaded executable (+SSE +OpenMP) (see usage guide)
Windows 32-bit command-line executable (no SSE)
Linux 64-bit executable (+SSE)
Multi-threaded executable (+SSE +OpenMP) (see usage guide)
Windows 32-bit command-line executable (no SSE)
下载 Windows 32-bit command-line executable (no SSE) 后,是一个 FastTree.exe 文件,可以直接在 cmd 命令行程序中调用运行。
新建一个文件夹:比如在 D 盘目录下新建一个 FastTree 文件夹,将 FastTree.exe 程序放在 D:FastTree 目录下。
FastTree 运行(Windows 为例)
最大似然树构建:FastTree protein alignment file > tree
在目录 D:FastTree 生成.tree 文件,可以使用 TreeView 或 MEGA 打开。
命令行:D:FastTree>FastTree -lg CIPK.phy >CIPK.如何使用IQ Option tree
最大似然树构建:FastTree protein alignment file > tree
在目录 D:FastTree 生成.tree 文件,可以使用 TreeView 或 MEGA 打开。
命令行:D:FastTree>FastTree -lg CIPK.phy >CIPK.tree
alignment file 格式
alignment file 格式如上图。
可以首先使用 Clustal X 比对序列:Alignment—Output Format Options—Phylip format
比对后,在比对目录下生成几个文件,其中.phy 后缀名文件是 FastTree 要使用的。
参考文献:
Hall B G. Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences[J]. Molecular Biology and Evolution, 2005, 22(3): 792-802.
Price, M.N., Dehal, P.S., and Arkin, A.P. (2009) FastTree: Computing Large Minimum-Evolution Trees with Profiles instead of a Distance Matrix. Molecular Biology and Evolution 26:1641-1650.
Price, M.N., Dehal, P.S., and Arkin, A.P. (2010) FastTree 2 -- Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE, 5(3):e9490.
Jones D T, Taylor W R, Thornton J M. The rapid generation of mutation data matrices from protein sequences[J]. Computer applications in the biosciences: CABIOS, 1992, 8(3): 275-282.
Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach[J]. Molecular biology and evolution, 2001, 18(5): 691-699.
Le S Q, Gascuel O. An improved general amino acid replacement matrix[J]. Molecular biology and evolution, 2008, 25(7): 1307-1320.